Actin cytoskeleton-dependent and -independent host cell invasion by Trypanosoma cruzi is mediated by distinct parasite surface molecules.

نویسندگان

  • Daniele Ferreira
  • Mauro Cortez
  • Vanessa D Atayde
  • Nobuko Yoshida
چکیده

The disassembly of host cell actin cytoskeleton as a facilitator of Trypanosoma cruzi invasion has been reported by some authors, while other workers claim that it instead inhibits internalization of the parasite. In this study we aimed at elucidating the basis of this discrepancy. We performed experiments with metacyclic trypomastigotes of T. cruzi strains G and CL, which differ markedly in infectivity and enter target cells by engaging the surface molecules gp35/50 and gp82, respectively, which have signaling activity. Treatment of HeLa cells with the F-actin-disrupting drug cytochalasin D or latrunculin B inhibited the invasion by strain G but not the invasion by strain CL. In contrast to cells penetrated by strain CL, which were previously shown to have a disrupted actin cytoskeleton architecture, no such alteration was observed in HeLa cells invaded by strain G, and parasites were found to be closely associated with target cell actin. Coinfection with enteroinvasive Escherichia coli (EIEC), which recruits host cell actin for internalization, drastically reduced entry of strain CL into HeLa cells but not entry of strain G. In contrast to gp82 in its recombinant form, which induces disruption of F-actin and inhibits EIEC invasion, purified mucin-like gp35/50 molecules promoted an increase in EIEC uptake by HeLa cells. These data, plus the finding that drugs that interfere with mammalian cell signaling differentially affect the internalization of metacyclic forms of strains G and CL, indicate that the host cell invasion mediated by gp35/50 is associated with signaling events that favor actin recruitment, in contrast to gp82-dependent invasion, which triggers the signaling pathways leading to disassembly of F-actin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell signaling during Trypanosoma cruzi invasion

Cell signaling is an essential requirement for mammalian cell invasion by Trypanosoma cruzi. Depending on the parasite strain and the parasite developmental form, distinct signaling pathways may be induced. In this short review, we focus on the data coming from studies with metacyclic trypomastigotes (MT) generated in vitro and tissue culture-derived trypomastigotes (TCT), used as counterparts ...

متن کامل

Role in host cell invasion of Trypanosoma cruzi-induced cytosolic-free Ca2+ transients

Trypanosoma cruzi enters cells by a unique mechanism, distinct from phagocytosis. Invasion is facilitated by disruption of host cell actin microfilaments, and involves recruitment and fusion of host lysosomes at the site of parasite entry. These findings implied the existence of transmembrane signaling mechanisms triggered by the parasites in the host cells before invasion. Here we show that in...

متن کامل

Molecular basis of mammalian cell invasion by Trypanosoma cruzi.

Establishment of infection by Trypanosoma cruzi, the agent of Chagas' disease, depends on a series of events involving interactions of diverse parasite molecules with host components. Here we focus on the mechanisms of target cell invasion by metacyclic trypomastigotes (MT) and mammalian tissue culture trypomastigotes (TCT). During MT or TCT internalization, signal transduction pathways are act...

متن کامل

Novel PI 3-kinase-dependent mechanisms of trypanosome invasion and vacuole maturation.

Mammalian cell invasion by the protozoan parasite, Trypanosoma cruzi, is facilitated by the activation of host cell phosphatidylinositol 3 (PI 3)-kinases. We demonstrate that the well-characterized Ca2+-regulated lysosome-mediated parasite entry pathway is abolished by wortmannin pretreatment. In addition, we have characterized a novel route of T. cruzi invasion unexpectedly revealed in the cou...

متن کامل

cAMP regulates Ca2+-dependent exocytosis of lysosomes and lysosome-mediated cell invasion by trypanosomes.

Ca2+-regulated exocytosis, previously believed to be restricted to specialized cells, was recently recognized as a ubiquitous process. In mammalian fibroblasts and epithelial cells, exocytic vesicles mobilized by Ca2+ were identified as lysosomes. Here we show that elevation in intracellular cAMP potentiates Ca2+-dependent exocytosis of lysosomes in normal rat kidney fibroblasts. The process ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Infection and immunity

دوره 74 10  شماره 

صفحات  -

تاریخ انتشار 2006